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Abstract: In this paper, we consider the exponential stabilization problem of a Timoshenko beam with interior
local controls with input delays. In the past, most of the stabilization results for the Timoshenko beam were on the
boundary control with input delays. In the present paper we shall extend the method treating the boundary control
with delays to the case of interior local control with delays. Essentially we design a new dynamic feedback control
laws that stabilizes exponentially the system. Detail of the design procedure of the dynamic feedback controller
and analysis of the exponential stability are given.
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1 Introduction
In the past few years, many of researchers of various
fields of science such as mathematics and mechani-
cal engineering have been investigating Timoshenko
beam due to its high application in industry. Design-
ing a control law which could stabilize Timoshenko
beam system is one of the most fascinating problems
that has engaged many of mathematicians and engi-
neers in branch of vibrations. For instance, Kim and
Rendary [1] studied the following Timoshenko beam
system:

ρwtt(x, t) = K(wxx(x, t)− φx(x, t)), x ∈ (0, L),
Iρφtt(x, t) = EIφxx(x, t)

+K(wx(x, t)− φ(x, t)), x ∈ (0, L),
w(0, t) = φ(0, t) = 0,
K(wx(L, t)− φ(L, t)) = u1(t),
EIφx(L, t) = u2(t),

They applied two boundary controls u1(t) =

−α∂w
∂t (L, t) and u2(t) = −β ∂φ

∂t (L, t) on the free
endpoint and obtained the uniformly stability of the
closed loop system; Xu and Feng [2] studied the same
system and concluded the Riesz basis property of the

closed loop system. Other works on this subject we
refer to Xu and Feng [2], Xu and Yung [3], Xu [4] and
references therein.

Observe that above design of the feedback control
law strongly depends on the precise control time t. If
there is any small time delay, the feedback control law
may be invalid, this fact was found at first by Datko et
al. in 1985. Datko et al. [5] studied the effect of
time delay in boundary control for the following wave
equation


wtt(x, t) = wxx(x, t)− 2awt(x, t)− a2w(x, t),
w(0, t) = 0,
wx(1, t) = −kwt(1, t− ϵ), t > ϵ,

and deduced that these feedback control laws were not
robust with respect of time delay. Other counterexam-
ple we refer to Datko [6] (1988) and [7] (1993) for
further instances.

After these works, researchers are starting to turn
their attention to systems with time delay. Xu et al. [8]
(2006) studied wave equation with boundary control
along with time delay as follows:
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wtt(x, t) = wxx(x, t), x ∈ (0, 1),
w(0, t) = 0,
wx(1, t) = −kµwt(1, t)− k(1− µ)wt(1, t− τ),
w(x, 0) = w0(x), wt(x, 0) = w1(x),
wt(1, t− τ) = f(t− τ)

with k > 0. They showed that the closed loop system
will be exponentially stable if µ > 1

2 for all τ > 0,
unstable if µ < 1

2 , and at most asymptotically stable
if µ = 1

2 . One could refer to Nicaise and Pignot-
ti [9](2006), Nicaise and Valien [10] (2007) and more
other works that have been done on wave equation and
other models [11][12]. Summarizing these works we
can conclude the 1

2 -stability criterion. Essentially s-
peaking these works do not include the design of con-
troller, this is because the controller can be regarded as
the input-delay αu(t)+βu(t− τ) with feedback con-
trol law u(t) = −wt(1, t). Obviously, µ < 1

2 , these
controller fail to work. So, for µ < 1

2 , the key issue is
to design a new feedback control law that could stabi-
lize the system exponentially.

Shang et al. [13](2012) started the boundary con-
troller design for a system with input delay. They s-
tudied the following Euler-Bernoulli beam equation:

wtt(x, t) + wxxxx(x, t) = 0, x ∈ (0, 1)
w(0, t) = wx(0, t) = wxx(1, t) = 0,
wxxx(1, t) = αu(t) + βu(t− τ),
w(x, 0) = w0(x), wt(x, 0) = w1(x)

and designed a dynamic feedback controller that con-
sists of two parts, the partial state predictor that trans-
form the delayed system into a undelayed system, de-
sign of the collocated feedback controller that gives
a control signal. In such a way they proved that the
closed loop system is exponentially stable provided
|α| ̸= |β| and all τ > 0, and at most asymptotical-
ly stable for |α| = |β|. Xu and Wang [15], Wang
and Xu[16] extended this design to the Timoshenko
beam and wave equation respectively. Han and X-
u [17] extended the controller design to the case of
output-based model. Liu and Xu [17], Shang and Xu
[18] improved the control design to fit the distributed
delay, [19] and [20] for case of output-based models.

In all the aforementioned works, the obtained re-
sults mainly are on the boundary control with delay.
In the present paper, our aim is to extend the design
approach of controller from the boundary control to
interior distributed control. Here we mainly consid-
er a Timoshenko beam with time delay in the internal
control. More precisely, we study the following Tim-

oshenko beam:

ρwtt(x, t) = K(wxx(x, t)− φx(x, t))
+ a(x)[α1u1(x, t) + β1u1(x, t− τ)], x ∈ (0, 1)

Iρφtt(x, t) = EIφxx(x, t) +K(wx(x, t)− φ(x, t))
+ b(x)[α2u2(x, t) + β2u2(x, t− τ)], x ∈ (0, 1)
w(0, t) = φ(0, t) = 0,

K(wx(1, t)− φ(1, t)) = 0,
EIφx(1, t) = 0,
w(x, 0) = w0(x), wt(x, 0) = w1(x)
φ(x, 0) = φ0(x), φt(x, 0) = φ1(x)
u1(x, θ) = f1(x, θ), u2(x, θ) = f2(x, θ)

(1)
where a(x) and b(x) are nonnegative and piecewise-
ly continuous functions and satisfy the condition that
there exists an interval [c1, c2] ⊂ [0, 1] such that

a(x) > a0 > 0, b(x) > b0 > 0, x ∈ [c1, c2]
(2)

This is an extensive model of Timoshenko beam
with the distributed controls and input delays. For ex-
amples, if β1 = β2 = 0, Shi and Fend [21], Soufyane
and Whebe [22] studied the exponential stability of
the system under the collocated feedback control law.
If αj > βj > 0, Raposo et al. [23] studied the ex-
ponential stability of the system under the collocat-
ed feedback control law. In this paper, we shall re-
move the restriction on αj and βj , j = 1, 2, and
design a dynamic controller for the above system,
that could stabilize the system exponentially for al-
l |αj | ̸= |βj |(j = 1, 2);∀τ > 0.

The rest of this paper is organized as follows. In
section 2, we describe the design procedure of con-
troller, that includes the three steps: the first step is to
transform the system (1) into a system without delays;
the second step is to design the collocated feedback
controllers for the resulted system, and generates the
control signals; the third step is to feed the control sig-
nal into the system (1), and hence forms a closed loop
system. Since there are great calculations in this sec-
tion, to simplify contents, we postponed some detail
calculations to appendix. In section 3, we prove the
main results of this paper. Essentially we prove that
system (1) under the controls is exponentially stable
for any |αj | ̸= |βj |,j = 1, 2. In section 4, we con-
clude this paper.

2 Design of Dynamic Feedback Con-
troller

In this section we describe the design procedure of
dynamic feedback controllers for the system (1). The
design idea is similar to that used in boundary control
with delays.
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Step 1. We find a transform that transforms the sys-
tem (1) into the objective system:

p1,t(x, t) = q1(x, t)

+ α1

∫ 1
0 H1(x, τ, y)a(y)u1(y, t)dy

+ α2

∫ 1
0 H2(x, τ, y)b(y)u2(y, t)dy,

p2,t(x, t) = q2(x, t)

+ α1

∫ 1
0 H3(x, τ, y)a(y)u1(y, t)dy

+ α2

∫ 1
0 H4(x, τ, y)b(y)u2(y, t)dy,

q1,t(x, t) =
K
ρ (p1,xx(x, t)− p2,x(x, t))

+ α1

∫ 1
0 H5(x, τ, y)a(y)u1(y, t)dy

+ α2

∫ 1
0 H6(x, τ, y)b(y)u2(y, t)dy

+ β1

ρ a(x)u1(x, t),

q2,t(x, t) =
EI
Iρ
p2,xx(x, t)

+ K
Iρ
(p1,x(x, t)− p2(x, t))

+ α1

∫ 1
0 H7(x, τ, y)a(y)u1(y, t)dy

+ α2

∫ 1
0 H8(x, τ, y)b(y)u2(y, t)dy

+ β2

Iρ
b(x)u2(x, t),

p1(0, t) = p2(0, t) = q1(0, t) = q2(0, t) = 0,
K(p1,x(1, t)− p2(1, t)) = 0,
EIp2,x(1, t) = 0,
p1(x, 0) = G1(w0, φ0, w1, φ1)(x)

− β1
∫ 0
−τ

∫ 1
0 H1(x, s, y)a(y)f1(y, s)dyds

− β2
∫ 0
−τ

∫ 1
0 H2(x, s, y)b(y)f2(y, s)dyds,

p2(x, 0) = G2(w0, φ0, w1, φ1)(x)

− β1
∫ 0
−τ

∫ 1
0 H3(x, s, y)a(y)f1(y, s)dyds

− β2
∫ 0
−τ

∫ 1
0 H4(x, s, y)b(y)f2(y, s)dyds,

q1(x, 0) = G3(w0, φ0, w1, φ1)(x)

+ β1
∫ 0
−τ

∫ 1
0 H5(x, s, y)a(y)f1(y, s)dyds

+ β2
∫ 0
−τ

∫ 1
0 H6(x, s, y)b(y)f2(y, s)dyds

q2(x, 0) = G4((w0, φ0, w1, φ1)(x),

+ β1
∫ 0
−τ

∫ 1
0 H7(x, s, y)a(y)f1(y, s)dyds

+ β2
∫ 0
−τ

∫ 1
0 H8(x, s, y)b(y)f2(y, s)dyds.

(3)
To realize the transform, we suppose that the state

of the system (1) is valid. Similarly we introduce the
partial state predictive system as

ρŵss(x, s, t)−K(ŵxx − φ̂x)(x, s, t)
= β1a(x)u1(x, t− τ + s), x ∈ (0, 1), s ∈ (0, τ);

Iρφ̂ss(x, s, t)− EIφ̂xx(x, s, t)−K(ŵx − φ̂)(x, s, t)
= β2b(x)u2(x, t− τ + s), x ∈ (0, 1), s ∈ (0, τ);

ŵ(0, s, t) = φ̂(0, s, t) = 0,
K(ŵx − φ̂)(1, s, t) = 0,
EIφ̂x(1, s, t) = 0,
ŵ(x, 0, t) = w(x, t), ŵs(x, 0, t) = wt(x, t),
φ̂(x, 0, t) = φ(x, t), φ̂s(x, 0, t) = φt(x, t).

(4)

and take 
p1(x, t) = ŵ(x, τ, t),
q1(x, t) = ŵs(x, τ, t)
p2(x, t) = φ̂(x, τ, t),
q2(x, t) = φ̂s(x, τ, t).

(5)

Then (p1, p2, q1, q2) satisfy the equation (3), and
the functions Gk(w0, φ0, w1, φ1)(x), k = 1, 2, 3, 4,
Hj(x, s, y), j = 1, 2, · · · , 8, are given in Appendix.

Step 2. We design feedback control law for system
(3) that may stabilize the system. Hence we get a con-
trol signal.

In order to get the right control signal, we consid-
er the energy function of (3)

E(t) = 1

2

∫ 1

0
[K(p1,x(x, t)− p2(x, t))

2dx

+
1

2

∫ 1

0
EIp22,x(x, t)]dx

+
1

2

∫ 1

0
[ρq21(x, t) + Iρq

2
2(x, t)]dx.

A direct calculation gives

dE(t)
dt

=

α1

∫ 1

0
a(y)u1(y, t)

[ ∫ 1

0
K(p1,x(x, t)− p2(x, t))

(∂xH1(x, τ, y)−H3(x, τ, y))dx
]
dy

+α1

∫ 1

0
a(y)u1(y, t)dy

∫ 1

0
EIp2,x(x, t)

∂xH3(x, τ, y)dx

+α1

∫ 1

0
a(y)u1(y, t)dy

∫ 1

0
ρq1(x, t)H5(x, τ, y)dx

+α1

∫ 1

0
a(y)u1(y, t)dy

∫ 1

0
Iρq2(x, t)H7(x, τ, y)dx

+β1

∫ 1

0
a(y)u1(y, t)q1(y, t)dx

+α2

∫ 1

0
b(y)u1(y, t)

[ ∫ 1

0
K(p1,x(x, t)− p2(x, t))

(∂xH2(x, τ, y)−H4(x, τ, y))dx
]
dy

+α2

∫ 1

0
b(y)u2(y, t)dy

∫ 1

0
EIp2,x(x, t)

∂xH4(x, τ, y)dx

+α2

∫ 1

0
b(y)u2(y, t)dy

∫ 1

0
ρq1(x, t)H6(x, τ, y)dx

+α2

∫ 1

0
b(y)u2(y, t)dy

∫ 1

0
Iρq2(x, t)H8(x, τ, y)dx
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+β2

∫ 1

0
b(y)u2(y, t)q2(y, t)dy.

Subsequently, the feedback control laws can be con-
sidered as follows:

u1(y, t) = −U1(p1, p2, q1, q2)(y, t)

= −
[
β1q1(y, t) + α1

∫ 1

0
K(p1,x(x, t)− p2(x, t))

(∂xH1(x, τ, y)−H3(x, τ, y))dx

+α1

∫ 1

0
EIp2,x(x, t)∂xH3(x, τ, y)dx

+ α1

∫ 1

0
ρq1(x, t)H5(x, τ, y)dx

+α1

∫ 1

0
Iρq2(x, t)H7(x, τ, y)dx

]
; (6)

u2(y, t) = −U2(p1, p2, q1, q2)(y, t)

= −
[
β2q2(y, t) + α2

∫ 1

0
K(p1,x(x, t)− p2(x, t))

(∂xH2(x, τ, y)−H4(x, τ, y))dx

+α2

∫ 1

0
EIp2,x(x, t)∂xH4(x, τ, y)dx

+ α2

∫ 1

0
ρq1(x, t)H6(x, τ, y)dx

+α2

∫ 1

0
Iρq2(x, t)H8(x, τ, y)dx

]
. (7)

Based on the feedback control laws, we have

dE(t)
dt

= −
∫ 1

0
a(y)U2

1 (p1, p2, q1, q2)(y, t)

−
∫ 1

0
b(y)U2

2 (p1, p2, q1, q2)(y, t)dy ≤ 0.

Under this feedback control law, the closed loop sys-
tem associated with (3) is

p1,t(x, t) = q1(x, t)

−α1

∫ 1
0 H1(x, τ, y)a(y)U1(y, t)dy

−α2

∫ 1
0 H2(x, τ, y)b(y)U2(y, t)dy,

p2,t(x, t) = q2(x, t)

−α1

∫ 1
0 H3(x, τ, y)a(y)U1(y, t)dy

−α2

∫ 1
0 H4(x, τ, y)b(y)U2(y, t)dy,

q1,t(x, t) =
K
ρ (p1,xx(x, t)− p2,x(x, t))

−α1

∫ 1
0 H5(x, τ, y)a(y)U1(y, t)dy

−α2

∫ 1
0 H6(x, τ, y)b(y)U2(y, t)dy

−β1

ρ a(x)U1(x, t),

q2,t(x, t) =
EI
Iρ
p2,xx(x, t)

+K
Iρ
(p1,x(x, t)− p2(x, t))

−α1

∫ 1
0 H7(x, τ, y)a(y)U1(y, t)dy

−α2

∫ 1
0 H8(x, τ, y)b(y)U2(y, t)dy

−β2

Iρ
b(x)U2(x, t),



p1(0, t) = p2(0, t) = q1(0, t) = q2(0, t) = 0,
K(p1,x(1, t)− p2(1, t)) = 0,
EIp2,x(1, t) = 0,
p1(x, 0) = G1(w0, φ0, w1, φ1)(x)

−β1
∫ 0
−τ

∫ 1
0 H1(x, s, y)a(y)f1(y, s)dyds

− β2
∫ 0
−τ

∫ 1
0 H2(x, s, y)b(y)f2(y, s)dyds,

p2(x, 0) = G2(w0, φ0, w1, φ1)(x)

− β1
∫ 0
−τ

∫ 1
0 H3(x, s, y)a(y)f1(y, s)dyds

− β2
∫ 0
−τ

∫ 1
0 H4(x, s, y)b(y)f2(y, s)dyds,

q1(x, 0) = G3(w0, φ0, w1, φ1)(x)

+ β1
∫ 0
−τ

∫ 1
0 H5(x, s, y)a(y)f1(y, s)dyds

+ β2
∫ 0
−τ

∫ 1
0 H6(x, s, y)b(y)f2(y, s)dyds

q2(x, 0) = G4((w0, φ0, w1, φ1)(x)

+ β1
∫ 0
−τ

∫ 1
0 H7(x, s, y)a(y)f1(y, s)dyds

+ β2
∫ 0
−τ

∫ 1
0 H8(x, s, y)b(y)f2(y, s)dyds.

(8)
Step 3. We feed the control signals both (6) and (7)
back to the system (1) and get that the following sys-
tem:

ρwtt(x, t) = K(wxx(x, t)− φx(x, t))
− a(x)[α1U1(P,Q)(x, t) + β1U1(P,Q)(x, t− τ)],
Iρφtt(x, t) = EIφxx(x, t) +K(wx(x, t)− φ(x, t))
− b(x)[α2U2(P,Q)(x, t) + β2U2(P,Q)(x, t− τ)],
w(0, t) = φ(0, t) = 0,

K(wx(1, t)− φ(1, t)) = 0,
EIφx(1, t) = 0,
w(x, 0) = w0(x), wt(x, 0) = w1(x),
φ(x, 0) = φ0(x), φt(x, 0) = φ1(x),
u1(x, θ) = f1(x, θ), u2(x, θ) = f2(x, θ).

(9)
Our main results are as the following.

Theorem 1 If the system (8) is exponentially stable,
then the system (9) also is exponentially stable; If the
system 8 is asymptotically stable, so is (9).

Theorem 2 Assume that a(x), b(x) satisfy the con-
dition (2),and assume that K

ρ ̸= EI
Iρ

. Then for any
τ > 0, the energy function of the system (8) decays
exponentially provided that |αj | ̸= |βj |(j = 1, 2).

3 Proofs of main results

In this section we prove Theorems 1 and 2. For sim-
plicity of notation, we introduce some spaces.

Let Hk[0, 1] be the usual sobolev space of order
k. Set V k

e [0, 1] = {f ∈ Hk[0, 1] | f(0) = 0}.
Let space be

H = V 1
e [0, 1]× V 1

e [0, 1]× L2
ρ[0, 1]× L2

Iρ [0, 1]
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equipped with inner product

⟨F,G⟩H =∫ 1

0
K(f1(x)− f2(x))(g

′
1(x)− g2(x))dx

+

∫ 1

0
EIf ′

2(x)g
′
2(x)dx+

∫ 1

0
ρf3(x)g3(x)dx

+

∫ 1

0
Iρf4(x)g(x)dx

for F = (f1, f2, f3, f4), G = (g1, g2, g3, g4) ∈ H.
It is easy to check that H is a real Hilbert space.

Lemma 3 (See[11, Lemma 2.1]) Let the differential
operator in L2

ρ[0, 1]× L2
Iρ
[0, 1] be defined by

J
[
w
φ

]
= −

[
K
ρ (w

′′(x)− φ′(x))
EI
Iρ
φ′′(x) + K

Iρ
(w′(x)− φ(x))

]
D(J ) =

{
(w(x), φ(x)) ∈ H2(0, 1)×H2(0, 1)

∣∣∣∣
w(0) = φ(0) = 0,K(w′(1)− φ(1)) = 0,

EIφ′(1) = 0
}

Then J is a self-adjoin and positive definite opera-
tor with compact resolvent in L2

ρ[0, 1] × L2
Iρ
[0, 1], its

eigenvalues are

0 < λ1 < λ2 ≤ . . . ≤ λn ≤ . . .

and the eigenfunctions Φn(x) = (wn(x), φn(x))
T

corresponding to λn are real functions and form a
normalised orthogonal basis for L2

ρ[0, 1]× L2
Iρ
[0, 1].

Note that

(J (w,φ), (w,φ))L2
ρ×L2

Iρ

=

∫ 1

0
K(w′(x)− φ(x))2dx+

∫ 1

0
EI(φ′(x))2dx

so, we can rewrite H as

H = D(J
1
2 )×H, H = L2

ρ[0, 1]× L2
Iρ [0, 1].

Set

X(x, t) = (w(x, t), φ(x, t))T ,
Xt(x, t) = (wt(x, t), φt(x, t))

T ,
P (x, t) = (p1(x, t), p2(x, t))

T ,
Q(x, t) = (q1(x, t), q2(x, t)

T ,
U(x, t) = (u1(x, t), u2(x, t))

T ,
U(P,Q) = (U1(p1, p2, q1, q2), U2(p1, p2, q1, q2))

T .

Then the system (9) can be written as

∂

∂t

(
X(x, t)
Xt(x, t)

)
=

(
0 I

−J 0

)(
X(x, t)
Xt(x, t)

)
−
(

0
A(x)[∆1U(x, t) + ∆2U(x, t− τ)]

)
(10)

and the system (8) can be written as

∂

∂t

(
P (x, t)
Q(x, t)

)
=

(
0 I

−J 0

)(
P (x, t)
Q(x, t)

)
−(

Sin(τJ )A(.)∆1U(P,Q)
Cos(τJ )A(.)∆1U(P,Q)−A(x)∆2U(P,Q)

)
(11)

where Sin(τJ ) and Cos(τJ ) are defined as in Ap-
pendix.

3.1 The Proof of Theorem 1

In this subsection we prove that the system (9) (i.e.,
the system (1) with controls (6) and (7) has the same
stability as that of the system (8). In the sequel, the
notations J , A(x), ∆j are the same as in Appendix.

We begin with considering the error of both sys-
tems (1) and (4):

e(x, s, t) = X(x, s+ t)− X̂(x, s, t).

It is easy to see that e(x, s, t) satisfies the following
vector-valued equation:

ess(x, s, t) + J e(x, s, t)
= A(x)∆1U(x, t+ s), x ∈ (0, 1), s ∈ (0, τ),
e(0, s, t) = 0, s ∈ (0, τ), t > 0
ΓNe(., s, t) = 0, s ∈ (0, τ), t > 0
e(x, 0, t) = 0, es(x, 0, t) = 0, x ∈ (0, 1).

(12)
Consequently, the energy function of the error system
is

ε(s, t) =
1

2
∥(e(., s, t), es(., s, t))∥2H

=
1

2
[(J

1
2 e(., s, t),J

1
2 e(., s, t))L2

ρ×L2
Iρ

+ (es(., s, t), es(., s, t))L2
ρ×L2

Iρ
]

Based on the equation (12), we can calculate

∂ε(s, t)

∂s
= (A(.)∆1U(., t+ s), es(., s, t))L2

ρ×L2
Iρ

and hence

ε(τ, t) =

∫ τ

0
(A(.)∆1U(·, t+ s), es(·, s, t))L2

ρ×L2
Iρ
ds.
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Note that

Cos(tJ )F =

∞∑
n=1

cos
√

λnt(F,Φn)L2
ρ×L2

Iρ
Φn(x)

and

es(x, s, t) =

∫ s

0
Cos((s− r)J )A(·)∆1U(·, t+ r)dr.

Thus we have

(A(.)∆1U(., t+ s), es(., s, t))L2
ρ×L2

Iρ

=

∫ s

0

∞∑
n=1

cos
√

λn(s− r)

(A(.)∆1U(., t+ r),Φn)L2
ρ×L2

Iρ

(A(·)∆1U(·, t+ s),Φn)L2
ρ×L2

Iρ
dr.

Using Cauchy-Schwartz inequality, by a detailed es-
timate, we can get that there are positive constants
Nj ,j = 1, 2, 3, depended only on α1, α2 such that

ε(τ, t) ≤

τN1

∫ τ

0

(∫ 1

0
a(x)u1(x, t+ s)dx

)2

ds

+2τN2

∫ τ

0

(∫ 1

0
a(x)u1(x, t+ s)dx

)
×(∫ 1

0
b(x)u2(x, t+ s)dx

)
ds

+τN3

∫ τ

0

(∫ 1

0
b(x)u2(x, t+ s)dx

)2

ds

≤ τN1

∫ 1

0
a(x)dx

∫ τ

0

∫ 1

0
a(x)u21(x, t+ s)dxds

+τN3

∫ 1

0
b(x)dx

∫ τ

0

∫ 1

0
b(x)u22(x, t+ s)dxds

+τN2

∫ 1

0
a(x)dx

∫ τ

0

∫ 1

0
a(x)u21(x, t+ s)dxds

+τN2

∫ 1

0
b(x)dx

∫ τ

0

∫ 1

0
b(x)u22(x, t+ s)dxds

≤ M

∫ t+τ

t

∫ 1

0

[
a(x)u21(x, s) + b(x)u22(x, s)

]
dxds

where M = max{(τN1 + τN2)||a||1, (τN2 +
τN3)||b||1}.

Let E(t) be the energy function of system (8).
From the section 2 we see that

dE(t)
dt

= −
∫ 1

0
a(y)U2

1 (p1, p2, q1, q2)(y, t)dy

−
∫ 1

0
b(y)U2

2 (p1, p2, q1, q2)(y, t)dy ≤ 0.

So

E(t+ τ) +

∫ τ

0

∫ 1

0
a(y)U2

1 (p1, p2, q1, q2)(y, s)dy

+

∫ τ

0

∫ 1

0
b(y)U2

2 (p1, p2, q1, q2)(y, s)dyds = E(t).

Therefore, we have

ε(τ, t) =
1

2

||(X(·, t+τ),Xt(·, t+τ))−(X̂(·, τ, t),X̂s(·, τ, t))||2H
=

1

2
||(X(·, t+τ), Xt(·, t+τ))−(P (·, t), Q(·, t))||2H

≤ M(E(t)− E(t+ τ)).

The desired result follows from above inequality. �

3.2 The Proof of Theorem 2

Note that the vector from of system (3) is
Pt(x, t) = Q(x, t) + Sin(τJ )A(.)∆1U(., t)
Qt(x, t) = −JP (x, t) + Cos(τJ )A(.)∆1U(., t)
+A(x)∆2U(x, t)

P (x, 0) = P0(x),
Q(x, 0) = Q0(x).

(13)
We determine its dual system as follows:∫ T

0
(J

1
2Pt(t),J

1
2W (t))H + (Qt(t), V (t))Hdt

=
(
J

1
2P (t),J

1
2W (t))H + (Q(t), V (t)

)
H

−
∫ T

0

(
J

1
2P (t),J

1
2Wt(t)

)
H
+
(
Q(t), Vt(t)

)
H
dt

=

∫ T

0

(
J

1
2 [Q(x, t)+Sin(τJ )A(.)∆1

U(., t)],J
1
2W (t)

)
H
dt

+

∫ T

0

(
− JP (x, t) + Cos(τJ )A(.)∆1U(., t)

+A(.)∆2U(., t), V (t)
)
H
dt

=

∫ T

0

(
J

1
2Q(., t),J

1
2W (t)

)
H
dt

+

∫ T

0

(
J

1
2Sin(τJ )A(.)∆1U(., t),J

1
2W (t)

)
H
dt

+

∫ T

0
(−JP (x, t), V (t))Hdt

+

∫ T

0

(
Cos(τJ )A(.)∆1U(., t)
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+A(.)∆2U(., t), V (t)
)
H
dt

= −
∫ T

0
(J

1
2P (x, t),J

1
2V (t))Hdt

+

∫ T

0
(Q(x, t),JW (t))Hdt

+

∫ T

0
(U(., t),∆1A(.)Sin(τJ )W (t))Hdt

+

∫ T

0
(U(., t),∆1A(.)Cos(τJ )V (t))Hdt

+

∫ T

0
(U(., t),∆2A(.)V (t))Hdt

where we have used the property of diagonal matrix
of A(x), ∆1 and ∆2. So its dual observation system
is

Wt(x, t) = V (x, t), x ∈ (0, 1), t > 0
Vt(x, t) = −JW (x, t), x ∈ (0, 1), t > 0
W (x, 0) = W0, V (x, 0) = V0

Y (x, t) = C(W,V )
= A(x)∆2V (x, t) +A(x)∆1Sin(τJ )JW (., t)
+A(x)∆1Cos(τJ )V (., t).

(14)
So the closed loop system (8) can be resulted by the
collocated feedback of system (14)(

Pt(x, t)
Qt(x, t)

)
=

(
0 I

−J 0

)(
P (x, t)
Q(x, t)

)
−C∗C

(
P (x, t)
Q(x, t)

)
. (15)

Therefore, the exponential stabilization of the system
(8) is equivalent to the exact observability of the sys-
tem (14) in finite time (see [24]).

To study the exact observability of system (14),
we need the following Lemma.

Lemma 4 (See [16, Proposition 3.4], or [11, Lemma
4.1]) Let H be a separable Hilbert space, and J be
an unbounded positive definite operator. Assume that
J satisfies the following conditions:

• J has compact resolvent and its spectrum is
σ(J ) = {λn;n ∈ N}.

• the spectra of J satisfy the separable condition

inf
m̸=n

{
√

λn −
√

λm} = δ > 0

• the corresponding eigenvectors {Φn;n ∈ N}
with ∥Φn∥H = 1 form a normalised orthogonal
basis for H .

Let Y be a Hilbert space. Assume that C : D(J
1
2 )×

H → Y is an admissible observation operator for(
0 I

−J 0

)
. Then the second order linear system


Ktt(t) + JK(t) = 0
K(0) = K0 Kt(0) = K1

Y (t) = C(K,Kt)

is exactly observable in finite time on the energy space
H = D(J

1
2 )×H if and only if

inf
n∈N

∥∥∥∥C( 1

i
√
λn

Φn,Φn

)∥∥∥∥2
Y

> 0 (16)

We are now in a position to check the exact ob-
servability of the system (14) in finite time. In our
model, the space Y = H = L2

ρ[0, 1]× L2
Iρ
[0, 1]. J is

defined as in Lemma 3. If K
ρ ̸= EI

Iρ
, then the condition

2 of Lemma 4 is fulfilled. The Lemma 3 asserts that
Φn = (wn(x), φn(x))

T satisfy the condition 3. Obvi-
ously, C is admissible operator. According to Lemma
4, we only need to check the condition (16). Since

C

(
1

i
√
λn

Φn,Φn

)
= A(x)∆2Φn(x)

+A(x)∆1(J
1
2Sin(τJ ))J

1
2

1

i
√
λn

Φn

+A(x)∆1(Cos(τJ ))Φn

=

(
a(x)
ρ

b(x)
Iρ

)(
β1

β2

)(
wn(x)
φn(x)

)

+

(
a(x)
ρ

b(x)
Iρ

)(
α1 0
0 α2

)
×(

−i sin τ
√
λnwn(x)

−i sin τ
√
λnφn(x)

)
+

(
a(x)
ρ

b(x)
Iρ

)(
α1

α2

)
×(

cos τ
√
λnwn(x)

cos τ
√
λnφn(x)

)
=

(
a(x)
ρ [β1 + α1e

−iτ
√
λn ]wn(x)

b(x)
Iρ

[β2 + α2e
−iτ

√
λn ]φn(x)

)
,

we have∥∥∥∥C( 1

i
√
λn

Φn,Φn

)∥∥∥∥2
Y

=
1

ρ

∫ 1

0
|a(x)|[β1 + α1e

−iτ
√
λn ]wn(x)|2dx
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+
1

Iρ

∫ 1

0
|b(x)[β2 + α2e

−iτ
√
λn ]φn(x)|2dx

=
|β1 + α1e

−iτ
√
λn |2

ρ2

∫ 1

0
ρ|a(x)wn(x)|2dx

+
|β2 + α2e

−iτ
√
λn |2

I2ρ

∫ 1

0
Iρ|b(x)φn(x)|2dx.

If |αj | ̸= |βj |, it holds that

inf
n

|β1 + α1e
−iτ

√
λn)| > 0,

inf
n

|β2 + α2e
−iτ

√
λn)| > 0.

Set

M = min

{
1

ρ2
inf
n

|β1 + α1e
−iτ

√
λn)|2,

1

I2ρ
inf
n

|β2 + α2e
−iτ

√
λn)|2

}
.

Then applying the condition (2) we have

∥∥∥∥C( 1

i
√
λn

Φn,Φn

)∥∥∥∥2
Y

≥ M(∫ 1

0
ρa2(x)w2

n(x)dx+

∫ 1

0
Iρb

2(x)φ2
n(x)dx

)
≥ M

(∫ c2

c1

ρa20w
2
n(x)dx+

∫ c2

c1

Iρb
2
0φ

2
n(x)dx

)
≥ M min{a20, b20} ×(∫ c2

c1

ρw2
n(x)dx+

∫ c2

c1

Iρφ
2
n(x)dx

)
Note that

1 = ||Φn||2H =

∫ 1

0
ρw2

n(x)dx+

∫ 1

0
Iρφ

2
n(x)dx.

We can assert that

inf
n

(∫ c2

c1

ρw2
n(x)dx+

∫ c2

c1

Iρφ
2
n(x)dx

)
> 0.

Therefore, we have the following results.

Theorem 5 Suppose that K
ρ ̸= EI

Iρ
. If |αj | ̸= |βj |,

j = 1, 2, then the system (14) is exactly observable in
finite time.

4 Conclusion

In this paper we extend the dynamic control design
from the boundary control with delays to the interior
local controls with delay for a Timoshenko beam. The
new control strategy stabilizes exponentially the sys-
tem for any time delay τ provided that |αj | ̸= |βj |,
j = 1, 2.

Our contribution in this paper includes the follow-
ing two aspects:

1) We found out the transform(
P (t)
Q(t)

)
=(

Cos(τJ ) Sin(τJ )
−J Sin(τJ ) Cos(τJ )

)(
K(t)
Kt(t)

)
+

∫ t

t−τ

(
Sin((t− s)J )
Cos((t− s)J )

)
BΛ2U(s)ds

That transfer the delayed second order system:{
Ktt(t) + JK(t) = B(Λ1U(t) + Λ2U(t− τ))
K(0) = K0 Kt(0) = K1

into a undelayed system:
Pt(t) = Q(t) + Sin(τJ )BΛ1U(t),
Qt(t) = −JP (t) + Cos(τJ )BΛ1U(t)

+BΛ2U(t),
P (0) = P0, Q(0) = Q0.

The partial state predictive system is a realization of
this transform.

2) We find out the dual observation system of the
(P,Q)-system:

Wt(t) = V (t),
Vt(t) = −JW (t),
W (0) = W0, V (0) = V0,
Y (t) = C(W,V )

= Λ∗
1B

∗V (t) + Λ∗
1B

∗J
1
2Sin(τJ )J

1
2W (t)

+Λ∗
1B

∗Cos(τJ )V (t).

Hence the negative feedback law U(t) = −Y (t) give
the closed loop system:

Pt(t) = Q(t)− Sin(τJ )BΛ1C(P,Q)(t)
Qt(t) = −JP (t)− Cos(τJ )BΛ1C(P,Q)(t)
+BΛ2C(P,Q)(t)

P (0) = P0, Q(0) = Q0.

This discoveries make us take directly transform for
second order system, and find out the closed loop sys-
tem. Therefore, the final work is to prove the exponen-
tial stability of the closed loop system. In the present
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paper we mainly apply the dual principle to transfer
the exponential stabilization into the exact observabil-
ity in finite time. For more complicated model, we
need to prove the observation inequality for the dual
system. In the future, we shall focus our attention on
the exponential stability of the closed loop system.

APPENDIX

In this appendix we use the operator manner to de-
scribe the procedure in section 2, and find out all func-
tions in formula. To this end, we begin with introduc-
ing useful lemmas and theorems.

Lemma 6 (See[11, Lemma 2.1]) Let the differential
operator in L2

ρ[0, 1]× L2
Iρ
[0, 1] be defined by

J
[
w
φ

]
= −

[
K
ρ (w

′′(x)− φ′(x))
EI
Iρ
φ′′(x) + K

Iρ
(w′(x)− φ(x))

]
D(J ) =

{
(w(x), φ(x)) ∈ H2(0, 1)×H2(0, 1) |

w(0) = φ(0) = 0,K(w′(1)− φ(1)) = 0,

EIφ′(1) = 0
}

Then J is a self-adjoin and positive definite opera-
tor with compact resolvent in L2

ρ[0, 1] × L2
Iρ
[0, 1], its

eigenvalues are

0 < λ1 < λ2 ≤ . . . ≤ λn ≤ . . .

and the eigenfunctions Φn(x) = (wn(x), φn(x))
T

corresponding to λn are real functions and form a
normalised orthogonal basis for L2

ρ[0, 1]× L2
Iρ
[0, 1].

Remark 7 (See[11, Remark 2.1]) Let d1 =
√

K
ρ and

d2 =
√

EI
Iρ

. Then the spectrum of operator has two
branches that have asymptotic expressions as follows:

λn,1 = d21

[(
n− 1

2

)
π

]2
+ o(n−1);

λn,2 = d22

[(
n− 1

2

)
π

]2
+ o(n−1), n ∈ N.

We write equations (1) in the vector form:(
wtt(x, t)
φtt(x, t)

)
−

(
K
ρ ∂xx −K

ρ ∂x
K
Iρ
∂x

EI
Iρ
∂xx +

K
Iρ

)(
w(x, t)
φ(x, t)

)

=

(
a(x)
ρ 0

0 b(x)
Iρ

)(
α1 0
0 α2

)(
u1(x, t)
u2(x, t)

)

+

(
a(x)
ρ 0

0 b(x)
Iρ

)(
β1 0
0 β2

)(
u1(x, t− τ)
u2(x, t− τ)

)
(

w(0, t)
φ(0, t)

)
= 0,(

K∂x −K
0 EI∂x

)(
w(x, t)
φ(x, t)

)
x=1

= 0,(
w(x, 0)
φ(x, 0)

)
=

(
w0(x)
φ0(x)

)
,(

wt(x, 0)
φt(x, 0)

)
=

(
w1(x)
φ1(x)

)
.

Set X(x, t) = (w(x, t), φ(x, t))T and U(x, t) =
(u1(x, t), u2(x, t))

T . Define 2× 2 matrices by

∆1 =

(
α1 0
0 α2

)
, ∆2 =

(
β1 0
0 β2

)
,

and define an operator ΓN from H2(0, 1) ×H2(0, 1)
to R2 and a matrix function, by

ΓN =

(
K∂x −K
0 EI∂x

)
, A(x) =

(
a(x)
ρ 0

0 b(x)
Iρ

)
.

With help of these notations, we can rewrite the sys-
tem (1) into

Xtt(x, t) + JX(x, t)
= A(x)(∆1U(x.t) + ∆2U(x, t− τ)), t > 0,
X(0, t) = 0, ΓNX(1, t) = 0,
X(x, 0) = X0(x) = (w0(x), φ0(x))

T ,
Xt(x, 0) = X1(x) = (w1(x), φ1(x))

T

(17)
and the partial state predictive system (4) into

X̂ss(x, s, t) + J X̂(x, s, t)
= A(x)∆2U(x, t+ s− τ), s ∈ (0, τ), x ∈ (0, 1)

X̂(0, s, t) = 0, ΓNX̂(1, s, t) = 0,

X̂(x, 0, t) = X(x, t),

X̂s(x, 0, t) = Xt(x, t)
(18)

By Lemma 6, we can define two family of the bound-
ed linear operators on L2

ρ[0, 1]× L2
Iρ
[0, 1] by

Sin(tJ )P =

∞∑
n=1

sin
√
λnt√

λn
(P,Φn)L2

ρ×L2
Iρ
Φn

Cos(tJ )P =

∞∑
n=1

cos
√

λnt(P,Φn)L2
ρ×L2

Iρ
Φn.

(19)

Clearly,

d

dt
Sin(tJ )P = Cos(tJ )P,

WSEAS TRANSACTIONS on MATHEMATICS Genqi Xu, A. Jalili Rahmati, F. Badpar

E-ISSN: 2224-2880 109 Volume 17, 2018



d

dt
Cos(tJ )P = −J Sin(tJ )P.

We define the vector-valued function X(x, t) by

X(x, t) = Cos(tJ )X0 + Sin(tJ )X1

+

∫ t

0
Sin((t− s)J )A(·)∆1U(·, s)ds

+

∫ t

0
Sin((t− s)J )A(·)∆2U(·, s− τ)ds.

It is easy to see that

Xt(x, t) = −J Sin(tJ )X0 + Cos(tJ )X1

+

∫ t

0
Cos((t− s)J )A(x)∆1U(x, s)ds

+

∫ t

0
Cos((t− s)J )A(x)∆2U(x, s− τ)ds,

Xtt(x, t) = −JX(x, t)

+A(x)[∆1U(x, t) + ∆2U(x, t− τ)].

So X(x, t) is a solution of system of equation (1).
Similarly, the function

X̂(x, s, t) = Cos(sJ )X(., t) + Sin(sJ )Xt(., t)

+

∫ s

0
Sin((s− r)J )A(·)∆2U(·, t+ r − τ)dr

is a formal solution of (4).
Denote the state of (4) at the moment s = τ by{
P (x, t) = (p1(x, t), p2(x, t))

T = X̂(x, τ, t)

Q(x, t) = (q1(x, t), q2(x, t))
T = X̂s(x, τ, t)

Therefore, we have(
P (x, t)
Q(x, t)

)
=

(
X̂(x, τ, t)

X̂s(x, τ, t)

)

=

(
Cos(τJ ) Sin(τJ )

−J Sin(τJ ) Cos(τJ )

)(
X(x, t)
Xt(x, t)

)
+

∫ τ

0

(
Sin((τ−r)J )
Cos((τ−r)J )

)
A(.)∆2U(·, t+r−τ)dr

=

(
Cos(τJ ) Sin(τJ )

−J Sin(τJ ) Cos(τJ )

)(
X(x, t)
Xt(x, t)

)
+

∫ t

t−τ

(
Sin((t− s)J )
Cos((t− s)J )

)
A(.)∆2U(., s)ds

i.e., (
P (x, t)
Q(x, t)

)
=

(
Cos(τJ ) Sin(τJ )

−J Sin(τJ ) Cos(τJ )

)(
X(x, t)
Xt(x, t)

)
+

∫ t

t−τ

(
Sin((t−s)J )
Cos((t−s)J )

)
A(.)∆2U(., s)ds

(20)

is the transform from (1) to (3). The corresponding
initial condition is given by

(
P (x, 0)
Q(x, 0)

)
=

(
Cos(τJ ) Sin(τJ )

−J Sin(τJ ) Cos(τJ )

)(
X0(x)
X1(x)

)
+

∫ 0

−τ

(
−Sin(sJ )
Cos(sJ )

)
A(.)∆2U(., s)ds

=


Cos(τJ )X0 + Sin(τJ )X1

−
∫ 0
−τ Sin(sJ )A(.)∆2U(., s)ds

−J Sin(τJ )X0 + Cos(τJ )X1

+
∫ 0
−τ Cos(sJ )A(.)∆2U(., s)ds

 .

In addition, we observe that

(
Pt(x, t)
Qt(x, t)

)
=

(
Cos(τJ ) Sin(τJ )

−J Sin(τJ ) Cos(τJ )

)
×(

0 I
−J 0

)(
X(x, t)
Xt(x, t)

)
+

(
Sin(τJ )A(.)[∆1U(., t)]

Cos(τJ )A(.)[∆1U(., t)] +A(.)∆2U(., t)

)
+

∫ t

t−τ

(
Cos((t− s)J )

−J Sin((t− s)J )

)
A(.)∆2U(., s)ds

=

(
0 I

−J 0

)(
P (x, t)
Q(x, t)

)
+

(
sin(τJ )A(.)∆1U(., t)

cos(τJ )A(.)∆1U(., t) +A(x)∆2U(x, t)

)
.

Therefore, the (P,Q) satisfy the following equation


Pt(x, t) = Q(x, t) + Sin(τJ )A(.)∆1U(., t)
Qt(x, t) = −JP (x, t) + Cos(τJ )A(.)∆1U(., t)
+A(x)∆2U(x, t)

ΓNP (1, t) = 0, P (0, t) = Q(0, t) = 0,
P (x, 0) = P0(x), Q(x, 0) = Q0(x)

(21)
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or equivalently,

p1,t(x, t) = q1(x, t)

+α1

∫ 1
0 H1(x, τ, y)a(y)u1(y, t)dy

+α2

∫ 1
0 H2(x, τ, y)b(y)u2(y, t)dy,

p2,t(x, t) = q2(x, t)

+α1

∫ 1
0 H3(x, τ, y)a(y)u1(y, t)dy

+α2

∫ 1
0 H4(x, τ, y)b(y)u2(y, t)dy,

q1,t(x, t) =
K
ρ (p1,xx(x, t)− p2,x(x, t))

+α1

∫ 1
0 H5(x, τ, y)a(y)u1(y, t)dy

+α2

∫ 1
0 H6(x, τ, y)b(y)u2(y, t)dy

+β1

ρ a(x)u1(x, t),

q2,t(x, t) =
EI
Iρ
p2,xx(x, t)

+K
Iρ
(p1,x(x, t)− p2(x, t))

+α1

∫ 1
0 H7(x, τ, y)a(y)u1(y, t)dy

+α2

∫ 1
0 H8(x, τ, y)b(y)u2(y, t)dy

+β2

Iρ
b(x)u2(x, t),

p1(0, t) = p2(0, t) = q1(0, t) = q2(0, t) = 0,
K(p1,x(1, t)− p2(1, t)) = 0,
EIp2,x(1, t) = 0,
p1(x, 0) = G1(w0, φ0, w1, φ1)(x)

−β1
∫ 0
−τ

∫ 1
0 H1(x, s, y)a(y)u1(y, s)dyds

−β2
∫ 0
−τ

∫ 1
0 H2(x, s, y)b(y)u2(y, s)dyds,

p2(x, 0) = G2(w0, φ0, w1, φ1)(x)

−β1
∫ 0
−τ

∫ 1
0 H3(x, s, y)a(y)u1(y, s)dyds

−β2
∫ 0
−τ

∫ 1
0 H4(x, s, y)b(y)u2(y, s)dyds,

q1(x, 0) = G3(w0, φ0, w1, φ1)(x)

+β1
∫ 0
−τ

∫ 1
0 H5(x, s, y)a(y)u1(y, s)dyds

+β2
∫ 0
−τ

∫ 1
0 H6(x, s, y)b(y)u2(y, s)dyds,

q2(x, 0) = G4(w0, φ0, w1, φ1)(x)

+β1
∫ 0
−τ

∫ 1
0 H7(x, s, y)a(y)u1(y, s)dyds

+β2
∫ 0
−τ

∫ 1
0 H8(x, s, y)b(y)u2(y, s)dyds.

(22)
The functions appearing in (22) are

H1(x, s, y) =
∞∑
n=1

sin(
√
λns)√
λn

wn(y)wn(x),

H2(x, s, y) =
∞∑
n=1

sin(
√
λns)√
λn

φn(y)wn(x)),

H3(x, s, y) =
∞∑
n=1

sin(
√
λns)√
λn

wn(y)φn(x),

H4(x, s, y) =
∞∑
n=1

sin(
√
λns)√
λn

φn(y)φn(x);

H5(x, s, y) = ∂sH1(x, s, y)

=
∞∑
n=1

cos(
√
λns)wn(y)wn(x),

H6(x, s, y) = ∂sH2(x, s, y)

=
∞∑
n=1

cos(
√
λns)φn(y)wn(x)),

and 

H7(x, s, y) = ∂sH3(x, s, y)

=
∞∑
n=1

cos(
√
λns)wn(y)φn(x),

H8(x, s, y) = ∂sH4(x, s, y)

=
∞∑
n=1

cos(
√
λns)φn(y)φn(x)

and functions Gk(X0, X1):

G1(X0, X1) =

∞∑
n=1

[
cos τ

√
λn(X0,Φn)L2

ρ×L2
Iρ

+
sin τ

√
λn

λn
(X1,Φn)L2

ρ×L2
Iρ

]
wn(x)

G2(X0, X1) =

∞∑
n=1

[
cos τ

√
λn(X0,Φn)L2

ρ×L2
Iρ

+
sin τ

√
λn

λn
(X1,Φn)L2

ρ×L2
Iρ

]
φn(x)

G3(X0, X1) =

∞∑
n=1

[
cos τ

√
λn(X1,Φn)L2

ρ×L2
Iρ

−
√

λn sin τ
√

λn(X0,Φn)L2
ρ×L2

Iρ

]
wn(x)

G4(X0, X1) =

∞∑
n=1

[
cos τ

√
λn(X1,Φn)L2

ρ×L2
Iρ

−
√

λn sin τ
√

λn(X0,Φn)L2
ρ×L2

Iρ

]
φn(x).
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